Successful Electronics Needs a Successful Name

Electronics Development and Success

Hello again,

 

A couple of posts ago in Electronics Manufacture Shines in Melbourne I said I would explain the origins of our company name. Many have suggested that Successful Endeavours sounds more like a personal coaching enterprise or a business that handles products by people like:

And the list could go on for a long time.

 

While I do hope we motivate and encourage our clients to improve their results, we assist them by undertaking activities such as:

 

 

Electronics Development Activities

  • Electronic Circuit Design
  • Electronic Circuit Simulation
  • Analogue Electronics
  • Analogue Design
  • Printed Circuit Board Design
  • Printed Circuit Board Layout
  • Electronic Prototyping
  • Electronic Testing
  • Embedded Software Design
  • Embedded Software Development
  • Embedded Software Coding
  • Embedded C
  • Embedded Software Debug

 

Development Statistics

The name came from some industry statistics on the success rate for Product Development. You can read more details in Reducing Electronics and Embedded Software Product Development Costs and I will summarise here:

  • 80% of embedded development projects fail in someway or another
  • Embedded software is 80% of the cost of an embedded development project
  • Embedded software is responsible for 80% of the delays and shortcomings

 

Successful Product Development

So it seemed to me that many Product Development Projects are unsuccessful endeavours. I wanted to change that. We have a success rate significantly better than all the industry norms. Our short USP ( Unique Selling Proposition ) is:

 

We Make Stuff Work

 

That’s it. The details are complex but the philosophy is simple. So for me, Electronics and Embedded Software Development should be a routinely Successful Endeavour. And so the name Successful Endeavours was chosen.

 

I am passionate and committed to assisting Australian Electronics Manufacturers who want to keep making their products in Australia. Made In Australia is what we are pursuing and we are focusing on this segment.

 

Ray Keefe has been developing high quality and market leading electronics products in Australia for nearly 30 years. For more information go to his LinkedIn profile. This post is Copyright © Successful Endeavours Pty Ltd.

2009 EDN Innovation Awards Finalist

EDN Innovation Awards Finalist

EDN Innovation Awards

EDN Innovation Awards

EDN Innovation Awards

This is a bit of a different post. I’m pretty stoked that we are finalists in the 2009 EDN Innovation Awards in 2 separate categories. The award categories are:

  • Best Application Of Analogue Design
  • Best Application Of Design Software

 

So I thought I might let you know a bit more about the project, and also give a public thanks to Pablo Varjabedian of Borgtech for allowing us to put the project forward. We design Electronics and Embedded Software products primarily for Australian Electronics Manufacturers. Our focus is outstanding Electronics Design that will propel them into a world class competitive position while delivering improved profit margins. Low Cost Electronics Manufacture but with outstanding performance and reliability.

 

We routinely use non-disclosure agreements, NDAs, with our clients and so don’t usually get the chance to put our design work forward for awards because we will never disclose a client’s Intellectual Property, IP, without their express permission. In this case Borgtech gave us permission and so we were able. As you can probably see, there is a real benefit to the client in allowing the award application because they also get recognition for the product.

 

This is also not an unusual project for us. We have done a lot of outstanding work over the 12 years we have been in operation. So it is good to have some of it recognised by the Industry we are so passionate about.

 

Electronics Design Details

This project was an example of our Project Priorities Perspective in action. In this case Performance was the primary concern with cost coming second and time coming last. We spent the time to get the performance up and the cost down. There was an earlier post on one aspect of this project where we looked at Analogue Electronics as a way to improve battery life in a Low Powered Electronics Data Logger.

 

The Electronics Design trade offs were:

  • OH&S or Operational Health and Safety – must protect users from hazardous voltages
  • Low Power Electronics – operates from 3 AA cells for up to 6 months
  • Convenience – Analogue front end completely Software Controlled
  • High Reading Accuracy – millivolt resolution over +/-10V range with 60dB Mains Rejection

There were many other Design Requirements but the above list are the core Electronics Design Requirements addressed as part of the award nomination. Below I will look at each of these in turn.

Protection From Hazardous Voltages

Now lets look at the hazardous voltage issue in a little bit more detail. The voltages in questions were:

  • 5000V, 5KV, for 2 seconds
  • 250VAC continuously

These come about due to the conduction of Lightning Strike Transients or Mains Leakage Voltages onto the Pipelines and Storage Tanks monitored for Corrosion Protection status. The Analogue Electronics front end had to provide protection against these cases while meeting all the other Design Requirements. And of course quickly settle so that only the readings during the disturbance were affected.

 

It also led to the use of an 802.15.4 RF Telemetry Link because this meant the monitoring PC could do Real Time Monitoring without hazard. Many other products in this industry use RS232, RS485 or even I2C connections for monitoring, configuration and upload of the Data Logger Records. In the case of the Borgtech CPL2 you can put it in place and then configure it and start the logging with no danger to the operator apart from the moment of electrical connection. And the initial part of the run can be monitored to ensure everything is correctly set up. Otherwise you could get a months worth of data that was useless.

 

And finally, because of the power budget and the possibility of the batteries going flat, the Analogue Electronics had to survive the above Abuse Voltages unpowered!

Low Power Electronics

The Borgtech CPL2 is a Battery Operated device. There are several reasons for this but the three most relevant are that it is:

  • IP68 sealed against water ingress – it is often installed in a pit that can flood
  • Must operate remotely from a convenient power source
  • Protects the operator and PC from Transient Voltages since there isn’t a direct electrical connection

But this is also part of the challenge. For convenience it used off the shelf batteries you can buy at any service station. But to get 6 months life required a strong Power Management approach including powering down anything not in use including the Analogue front end. If you are taking a reading every minute over six months then most of the device is off most of the time. In this mode the average Power Consumption is 37uA.

Analogue Electronics – Software Controlled

The Borgtech CPL2 handles both Current Shunt and voltage mode readings. The Analogue Electronics were designed to have a software selectable full scale range of +/-10VDC and +/-150mVDC so that is could do either mode of operation from the same input. The previous model required a different connection for each of these modes and most other models on the market are the same.

 

And all of this while maintaining accuracy, abuse voltage protection and low power operation.

High Reading Accuracy

By the standards of an Agilent (I still want to call them Hewlett Packard) 6.5 digit laboratory multimeter our millivolt, mV, resolution at +/-10VDC isn’t rocket science. But for a device with the Voltage Abuse Protection and Low Power Electronics requirements we had to meet, it is pretty good. Another small twist you might not recognise is that it is +/-10VDC. This means you can monitor it with the polarity inverted and fix it up later on by inverting all the readings. The previous model was unipolar and so you couldn’t do this meaning you could have just wasted a month. And then there is the live monitoring so you can see what the readings look like before leaving the unit to log away in the background.

 

EDN Innovation Awards

On 17 September 2009 we know the final outcome but either way I am pretty happy to have the recognition this project has already received.

 

Ray Keefe has been developing high quality and market leading electronics products in Australia for nearly 30 years. For more information go to his LinkedIn profile.This post is Copyright © Successful Endeavours Pty Ltd.

Analogue Electronics – Improving Signal Integrity

Analogue Electronics

Sometimes you come across a post elsewhere that is absolutely on the ball. When it comes to Low Cost Electronics Manufacture, Analogue Electronics Design and Analogue signal integrity, the three are closely linked. Many a product has had expensive technical band-aids added to it to cover up poor underlying Analogue Electronics Design. So avoiding the poor Electronics Design will avoid the unnecessary expense. This is especially true when it comes to the two most misunderstood aspects of Electronics Design:

  • Analogue Electronics
  • Radio Frequency Electronics (RF Design)

For this post we will focus on Analogue Electronics and some simple strategies to avoid problems. A problem you don’t have is a problem you don’t have to fix. The key to success with Analogue Electronics is very simple:

  • Know what you are doing
  • Do it right the first time

 

Ray Keefe has been developing high quality and market leading electronics products in Australia for nearly 30 years. For more information go to his LinkedIn profile. This post is Copyright © Successful Endeavours Pty Ltd.

________________________________________________

 

Analogue Electronics – a Surprising Way to Extend Battery Life

Today we look at one of the Project Priorities Perspectives in action. This was a case where performance was the most important factor and so minimising cost or time to market was a lower priority in the this Electronics Manufacture project. In this case the PCB and electronics were Manufactured In Australia.

 

We were developing a wireless Data Logger product. We selected 802.15.4 as the wireless protocol but did not need the interoperability of ZigBee. A key issue here was Battery Life. One use of the product was as a device left in the field and collected after 1 to 6 months. The actual time interval depended on the use. Since we have the client’s permission we can share details of the project and the product with you.

 

The product is a Corrosion Protection Data Logger and the client is Borgtech. The first version is the Borgtech CPL2 and it is on the market today.

 

Some key product features made it a little tricky as an Electronics Design Project:

  • inputs must withstand lightning strike impulses. This equated to 5KV for 2 seconds according to the local standards!
  • wireless connection for both convenience and also as an OH&S safety measure
  • 6 months battery life
  • 60dB rejection of mains frequencies at 50Hz and 60Hz
  • 10MOhm input impedance
  • a good profit margin

Don’t worry if you don’t understand what all the details mean, I wanted to show how we used the process to identify the best approach rather than go further into millivolts and microwatts.

 

Technically, this project was quite a challenge. And a classic niche marketing example as well. My initial approach was to minimise the production component cost and look at ways to meet the other objectives. But it didn’t take long to realise that battery life was going to be the hardest challenge here. I was able to use digital signal processing techniques (software) to meet the mains frequency rejection but the power requirements meant we were never going to get 6 months battery life and the radio side also contributed to that problem. I’ll concentrate on the filtering problem.

Analogue Electronics to the rescue

Normally we have been removing electronics components and replacing them with software to save on product cost. But this time, the priority was performance and not cost. So I added components instead. Below is a schematic representing the front end of the product.

schematic

Analogue Electronics Schematic

For those interested, this is a twin T filter. It is a notch filter that takes out specific frequencies. If you want more details then post a comment and I’ll add them.

 

The great thing about this is that it doesn’t use any Battery Power. Unlike the software solution which uses the whole power budget on its own. So from the batteries perspective, it is FREE! It did cost some design effort and did add some production cost but the battery got off lightly.

 

So here is how the priorities played out for this project. To get the performance, it cost a bit more and took a bit longer. The outcome was the right product at an acceptable price point and in a market with growing demand. Powerful stuff.

 

Now we did have to do a lot of other stuff to deliver this product so that it met every one of the design objectives. It also delivered on the client’s expectations and met the cost target too. It helped a lot that Borgtech understood their market and were able to guide us when making the decisions about priorities.

 

In practice, we make decision like the one above every day. Going left at the right time when everyone else is going right can deliver outstanding results. Marc Dussault refers to this as antimimeticisomorphism.

 

Next I want to look at going the opposite way to the path we took for this project. This is a case where cost is king and performance must be good enough but is not the primary priority.

 

Ray Keefe has been developing high quality and market leading electronics products in Australia for nearly 30 years. For more information go to his LinkedIn profile. This post is Copyright © Successful Endeavours Pty Ltd.